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ABSTRACT

In this paper we report on the recent developments in
NYU’s natural language information retrieval system,
especially as related to the 3rd Text Retrieval Conference
(TREC-3). The main characteristic of this system is the
use of advanced natural language processing to enhance
the effectiveness of term-based document retrieval. The
system is designed around a traditional statistical back-
bone consisting of the indexer module, which builds
inverted index files from pre-processed documents, and a
retrieval engine which searches and ranks the documents
in response to user queries. Natural language processing
is used to (1) preprocess the documents in order to
extract content-carrying terms, (2) discover inter-term
dependencies and build a conceptual hierarchy specific to
the database domain, and (3) process user’s natural
language requests into effective search queries. For the
present TREC-3 effort, the total of 3.3 GBytes of text
articles have been processed (Tipster disks 1 through 3),
including material from the Wall Street Journal, the
Associated Press newswire, the Federal Register, Ziff
Communications’s Computer Library, Department of
Energy abstracts, U.S. Patents and the San Jose Mercury
News, totaling more than 500 million words of English.
Since the TREC-2 conference, many components of the
system have been redesigned to facilitate its scalability to
deal with ever increasing amounts of data. In particular, a
randomized index-splitting mechanism has been installed
which allows the system to create a number of smaller
indexes that can be independently and efficiently
searched.

INTRODUCTION

A typical (full-text) information retrieval (IR) task
is to select documents from a database in response to a
user’s query, and rank these documents according to
relevance. This has been usually accomplished using sta-
tistical methods (often coupled with manual encoding)
that (a) select terms (words, phrases, and other units)
from documents that are deemed to best represent their
content, and (b) create an inverted index file (or files)
that provide an easy access to documents containing

these terms. A subsequent search process will attempt to
match preprocessed user queries against term-based
representations of documents in each case determining a
degree of relevance between the two which depends
upon the number and types of matching terms. Although
many sophisticated search and matching methods are
available, the crucial problem remains to be that of an
adequate representation of content for both the docu-
ments and the queries.

In term-based representation, a document (as well
as a query) is transformed into a collection of weighted
terms, derived directly from the document text or
indirectly through thesauri or domain maps. The
representation is anchored on these terms, and thus their
careful selection is critical. Since each unique term can
be thought to add a new dimensionality to the representa-
tion, it is equally critical to weigh them properly against
one another so that the document is placed at the correct
position in the N-dimensional term space. Our goal here
is to have the documents on the same topic placed close
together, while those on different topics placed
sufficiently apart. Unfortunately, we often do not know
how to compute terms weights. The statistical weighting
formulas, based on terms distribution within the data-
base, such as tf.idf, are far from optimal, and the assump-
tions of term independence which are routinely made are
false in most cases. This situation is even worse when
single-word terms are intermixed with phrasal terms and
the term independence becomes harder to justify.

The simplest word-based representations of con-
tent, while relatively better understood, are usually
inadequate since single words are rarely specific enough
for accurate discrimination, and their grouping is often
accidental. A better method is to identify groups of
words that create meaningful phrases, especially if these
phrases denote important concepts in the database
domain. For example, joint venture is an important term
in the Wall Street Journal (WSJ henceforth) database,
while neither joint nor venture is important by itself. In
the retrieval experiments with the training TREC data-
base, we noticed that both joint and venture were
dropped from the list of terms by the system because
their idf (inverted document frequency) weights were too
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low. In large databases, such as TIPSTER, the use of
phrasal terms is not just desirable, it becomes necessary.

An accurate syntactic analysis is an essential prere-
quisite for selection of phrasal terms. Various statistical
methods, e.g., based on word co-occurrences and mutual
information, as well as partial parsing techniques, are
prone to high error rates (sometimes as high as 50%),
turning out many unwanted associations. Therefore a
good, fast parser is necessary, but it is by no means
sufficient. While syntactic phrases are often better indi-
cators of content than ‘statistical phrases’ — where
words are grouped solely on the basis of physical prox-
imity (e.g., "college junior" is not the same as "junior
college") — the creation of compound terms makes term
matching process more complex since in addition to the
usual problems of synonymy and subsumption, one must
deal with their structure (e.g., "college junior" is the
same as "junior in college"). In order to deal with struc-
ture, the parser’s output needs to be "normalized" or
"regularized" so that complex terms with the same or
closely related meanings would indeed receive matching
representations. This goal has been achieved to a certain
extent in the present work. As it will be discussed in
more detail below, indexing terms were selected from
among head-modifier pairs extracted from predicate-
argument representations of sentences.

Introduction of compound terms also complicates
the task of discovery of various semantic relationships
among them, including synonymy and subsumption. For
example, the term natural language can be considered, in
certain domains at least, to subsume any term denoting a
specific human language, such as English. Therefore, a
query containing the former may be expected to retrieve
documents containing the latter. The same can be said
about language and English, unless language is in fact a
part of the compound term programming language in
which case the association language - Fortran is
appropriate. This is a problem because (a) it is a standard
practice to include both simple and compound terms in
document representation, and (b) term associations have
thus far been computed primarily at word level (includ-
ing fixed phrases) and therefore care must be taken when
such associations are used in term matching. This may
prove particularly troublesome for systems that attempt
term clustering in order to create "meta-terms" to be used
in document representation.

The system presented here computes term associa-
tions from text at word and fixed phrase level and then
uses these associations in query expansion. A fairly
primitive filter is employed to separate synonymy and
subsumption relationships from others including anto-
nymy and complementation, some of which are strongly
domain-dependent. This process has led to an increased
retrieval precision in experiments with both ad-hoc and
routing queries for TREC-1 and TREC-2 experiments.

However, the actual improvement levels can vary sub-
stantially between different databases, types of runs (ad-
hoc vs. routing), as well as the degree of prior processing
of the queries. We continue to study more advanced
clustering methods along with the changes in interpreta-
tion of resulting associations, as signaled in the previous
paragraph. In the remainder of this paper we discuss par-
ticulars of the present system and some of the observa-
tions made while processing TREC-3 data.

OVERALL DESIGN

Our information retrieval system consists of a trad-
itional statistical backbone (NIST’s PRISE system; Har-
man and Candela, 1989) augmented with various natural
language processing components that assist the system in
database processing (stemming, indexing, word and
phrase clustering, selectional restrictions), and translate a
user’s information request into an effective query. This
design is a careful compromise between purely statistical
non-linguistic approaches and those requiring rather
accomplished (and expensive) semantic analysis of data,
often referred to as ‘conceptual retrieval’.

In our system the database text is first processed
with a fast syntactic parser. Subsequently certain types of
phrases are extracted from the parse trees and used as
compound indexing terms in addition to single-word
terms. The extracted phrases are statistically analyzed as
syntactic contexts in order to discover a variety of simi-
larity links between smaller subphrases and words occur-
ring in them. A further filtering process maps these simi-
larity links onto semantic relations (generalization, spe-
cialization, synonymy, etc.) after which they are used to
transform a user’s request into a search query.

The user’s natural language request is also parsed,
and all indexing terms occurring in it are identified. Cer-
tain highly ambiguous, usually single-word terms may be
dropped, provided that they also occur as elements in
some compound terms. For example, "natural" is deleted
from a query already containing "natural language"
because "natural" occurs in many unrelated contexts:
"natural number", "natural logarithm", "natural
approach", etc. At the same time, other terms may be
added, namely those which are linked to some query
term through admissible similarity relations. For exam-
ple, "unlawful activity" is added to a query (TREC topic
055) containing the compound term "illegal activity" via
a synonymy link between "illegal" and "unlawful". After
the final query is constructed, the database search fol-
lows, and a ranked list of documents is returned.

There are several deviations from the above
scheme in the system that has been actually used in
TREC-3, as well as some important changes from
TREC-2. First and foremost, we have ‘graduated’ from
the category B (exploratory systems, about 1/4 of text
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data) to the category A (full participation) mostly thanks
to significant efficiency improvements in the NLP
module. In particular, the BBN’s part-of-speech tagger,
which we use to preprocess the input before parsing, has
been redesigned in time for TREC-3 so that it now adds
no more than 5% overhead to the parsing time. We have
also installed a new, more efficient version of NIST’s
PRISE system which cut the indexing time from days to
hours. In order to keep memory usage within the limits
of our resources, as well as to prepare the system to deal
with practically unlimited amounts of data in the future,
we devised a randomized index splitting mechanism
which creates not one but several balanced sub-indexes.
These sub-indexes can be searched independently and
the results can be merged meaningfully into a single
ranking. Finally, while the query expansion via the
domain map is an important part of our system, it has not
been used in TREC-3 runs. Our analysis of TREC-2
results revealed several problems with the query expan-
sion scheme and we were in process of redesigning it,
however, we were unable to test the revised approach in
time for this evaluation, and thus decided to leave it out
of TREC-3. We plan to have it in place for TREC-4.

Before we proceed to discuss the particulars of our
system we would like to note that all the processing
steps, those performed by the backbone system, and
those performed by the natural language processing com-
ponents, are fully automated, and no human intervention
or manual encoding is required.

FAST PARSING WITH TTP PARSER

TTP (Tagged Text Parser) is based on the Linguis-
tic String Grammar developed by Sager (1981). The
parser currently encompasses some 400 grammar pro-
ductions, but it is by no means complete. The parser’s
output is a regularized parse tree representation of each
sentence, that is, a representation that reflects the
sentence’s logical predicate-argument structure. For
example, logical subject and logical object are identified
in both passive and active sentences, and noun phrases
are organized around their head elements. The parser is
equipped with a powerful skip-and-fit recovery mechan-
ism that allows it to operate effectively in the face of ill-
formed input or under a severe time pressure. When
parsing the TREC-3 collection of more than 500 million
words, we found that the parser’s speed averaged
between 0.17 and 0.26 seconds per sentence, or up to 80
words per second, on a Sun’s SparcStation10. In addi-
tion, TTP has been shown to produce parse structures
which are no worse than those generated by full-scale
linguistic parsers when compared to hand-coded
Treebank parse trees.

TTP is a full grammar parser, and initially, it
attempts to generate a complete analysis for each

sentence. However, unlike an ordinary parser, it has a
built-in timer which regulates the amount of time
allowed for parsing any one sentence. If a parse is not
returned before the allotted time elapses, the parser
enters the skip-and-fit mode in which it will try to "fit"
the parse. While in the skip-and-fit mode, the parser will
attempt to forcibly reduce incomplete constituents, possi-
bly skipping portions of input in order to restart process-
ing at a next unattempted constituent. In other words, the
parser will favor reduction to backtracking while in the
skip-and-fit mode. The result of this strategy is an
approximate parse, partially fitted using top-down pred-
ictions. The fragments skipped in the first pass are not
thrown out, instead they are analyzed by a simple phrasal
parser that looks for noun phrases and relative clauses
and then attaches the recovered material to the main
parse structure. Full details of TTP parser have been
described in the TREC-1 report (Strzalkowski, 1993a), as
well as in other works (Strzalkowski, 1992; Strzalkowski
& Scheyen, 1993).

As may be expected, the skip-and-fit strategy will
only be effective if the input skipping can be performed
with a degree of determinism. This means that most of
the lexical level ambiguity must be removed from the
input text, prior to parsing. We achieve this using a sto-
chastic parts of speech tagger to preprocess the text (see
TREC-1 report for details).

WORD SUFFIX TRIMMER

Word stemming has been an effective way of
improving document recall since it reduces words to their
common morphological root, thus allowing more suc-
cessful matches. On the other hand, stemming tends to
decrease retrieval precision, if care is not taken to
prevent situations where otherwise unrelated words are
reduced to the same stem. In our system we replaced a
traditional morphological stemmer with a conservative
dictionary-assisted suffix trimmer. 1 The suffix trimmer
performs essentially two tasks: (1) it reduces inflected
word forms to their root forms as specified in the diction-
ary, and (2) it converts nominalized verb forms (e.g.,
"implementation", "storage") to the root forms of
corresponding verbs (i.e., "implement", "store"). This is
accomplished by removing a standard suffix, e.g.,
"stor+age", replacing it with a standard root ending
("+e"), and checking the newly created word against the
dictionary, i.e., we check whether the new root ("store")
is indeed a legal word. Below is a small example of text
before and after stemming.
������������������������������������

1 Dealing with prefixes is a more complicated matter, since they
may have quite strong effect upon the meaning of the resulting term,
e.g., un- usually introduces explicit negation.
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While serving in South Vietnam, a number of U.S.
Soldiers were reported as having been exposed to
the defoliant Agent Orange. The issue is veterans
entitlement, or the awarding of monetary compensa-
tion and/or medical assistance for physical damages
caused by Agent Orange.

serve south vietnam number u.s. soldier expose de-
foliant agent orange veteran entitle award monetary
compensate medical assist physical damage agent
orange

Please note that proper names, such as South Vietnam
and Agent Orange are identified separately through the
name extraction process described below. Note also that
various ‘‘stopwords’’ (e.g., prepositions, conjunctions,
articles, etc.) are removed from text.

HEAD-MODIFIER STRUCTURES

Syntactic phrases extracted from TTP parse trees
are head-modifier pairs. The head in such a pair is a cen-
tral element of a phrase (main verb, main noun, etc.),
while the modifier is one of the adjunct arguments of the
head. In the TREC experiments reported here we
extracted head-modifier word and fixed-phrase pairs
only. While TREC databases are large enough to warrant
generation of larger compounds, we were unable to ver-
ify their effectiveness in indexing, mostly because of the
tight schedule.

Let us consider a specific example from the WSJ
database:

The former Soviet president has been a local hero
ever since a Russian tank invaded Wisconsin.

The tagged sentence is given below, followed by the reg-
ularized parse structure generated by TTP, given in Fig-
ure 1.

The/dt former/jj Soviet/jj president/nn has/vbz
been/vbn a/dt local/jj hero/nn ever/rb since/in a/dt
Russian/jj tank/nn invaded/vbd Wisconsin/np ./per

It should be noted that the parser’s output is a
predicate-argument structure centered around main ele-
ments of various phrases. In Figure 1, BE is the main
predicate (modified by HAVE) with 2 arguments (sub-
ject, object) and 2 adjuncts (adv, sub_ord). INVADE is
the predicate in the subordinate clause with 2 arguments
(subject, object). The subject of BE is a noun phrase
with PRESIDENT as the head element, two modifiers
(FORMER, SOVIET) and a determiner (THE). From this
structure, we extract head-modifier pairs that become
candidates for compound terms. The following types of
pairs are considered: (1) a head noun and its left adjec-
tive or noun adjunct, (2) a head noun and the head of its
right adjunct, (3) the main verb of a clause and the head
of its object phrase, and (4) the head of the subject

[assert

[[perf [HAVE]]

[[verb [BE]]

[subject

[np

[n PRESIDENT]

[t_pos THE]

[adj [FORMER]]

[adj [SOVIET]]]]

[object

[np

[n HERO]

[t_pos A]

[adj [LOCAL]]]]

[adv EVER]

[sub_ord

[SINCE

[[verb [INVADE]]

[subject

[np

[n TANK]

[t_pos A]

[adj [RUSSIAN]]]]

[object

[np

[name [WISCONSIN]]]]]]]]]]

Figure 1. Predicate-argument parse structure.

phrase and the main verb. These types of pairs account
for most of the syntactic variants for relating two words
(or simple phrases) into pairs carrying compatible
semantic content. For example, the pair
retrieve+information will be extracted from any of the
following fragments: information retrieval system;
retrieval of information from databases; and information
that can be retrieved by a user-controlled interactive
search process. In the example at hand, the following
head-modifier pairs are extracted (pairs containing low-
content elements, such as BE and FORMER, or names,
such as WISCONSIN, will be later discarded):

PRESIDENT+BE, PRESIDENT+FORMER, PRESIDENT+SOVIET,

BE+HERO, HERO+LOCAL,

TANK+INVADE, TANK+RUSSIAN, INVADE+WISCONSIN

We may note that the three-word phrase former Soviet
president has been broken into two pairs former
president and Soviet president, both of which denote
things that are potentially quite different from what the
original phrase refers to, and this fact may have poten-
tially negative effect on retrieval precision. This is one
place where a longer phrase appears more appropriate.
The representation of this sentence may therefore contain
the following terms (along with their inverted document
frequency weights):
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PRESIDENT 2.623519

SOVIET 5.416102

PRESIDENT+SOVIET 11.556747

PRESIDENT+FORMER 14.594883

HERO 7.896426

HERO+LOCAL 14.314775

INVADE 8.435012

TANK 6.848128

TANK+INVADE 17.402237

TANK+RUSSIAN 16.030809

RUSSIAN 7.383342

WISCONSIN 7.785689

While generating compound terms we took care to iden-
tify ‘negative’ terms, that is, those whose denotations
have been explicitly excluded by negation. Even though
matching of negative terms was not used in retrieval (nor
did we use negative weights), we could easily prevent
matching a negative term in a query against its positive
counterpart in the database by removing known negative
terms from queries. As an example consider the follow-
ing fragment from topic 192:

References to the cost of cleanup and number of
people and equipment involved without mentioning
the method are not relevant.

The corresponding compound terms are:

NOT cost cleanup

NOT number equip

NOT number people

Note that while this statement is negated, the negation is
conditioned with the without mentioning ... phrase. Our
NLP module is not able to represent such fine distinc-
tions at this time.

NOMINAL COMPOUNDS

The notorious ambiguity of nominal compounds
remains a serious difficulty in obtaining head-modifier
pairs of highest accuracy. In order to cope with this, the
pair extractor looks at the distribution statistics of the
compound terms to decide whether the association
between any two words (nouns and adjectives) in a noun
phrase is both syntactically valid and semantically
significant. For example, we may accept
language+natural and processing+language from
natural language processing as correct, however,
case+trading would make a mediocre term when
extracted from insider trading case. On the other hand, it
is important to extract trading+insider to be able to
match documents containing phrases insider trading
sanctions act or insider trading activity. Phrasal terms
are extracted in two phases. In the first phase, only unam-
biguous head-modifier pairs are generated, while all
structurally ambiguous noun phrases are passed to the
second phase "as is". In the second phase, the distribu-
tional statistics gathered in the first phase are used to

predict the strength of alternative modifier-modified links
within ambiguous phrases. For example, we may have
multiple unambiguous occurrences of insider trading,
while very few of trading case. At the same time, there
are numerous phrases such as insider trading case,
insider trading legislation, etc., where the pair insider
trading remains stable while the other elements get
changed, and significantly fewer cases where, say, trad-
ing case is constant and the other words change.

The disambiguation procedure is performed after
the first phrase extraction pass in which all unambiguous
pairs (noun+noun and noun+adjective) and all ambigu-
ous noun phrases are extracted. Any nominal string con-
sisting of three or more words of which at least two are
nouns is deemed structurally ambiguous. In the Tipster
corpus, about 80% of all ambiguous nominals were of
length 3 (usually 2 nouns and an adjective), 19% were of
length 4, and only 1% were of length 5 or more. The
algorithm proceeds in three steps, as follows:

(1) Assign scores to each of the candidate pairs xi+xj
where i>j from the ambiguous noun phrase
x 1

. . . xn. The score assigned to a candidate pair
is the sum of the scores for each occurrence of
this pair in any compound nominal within the
training corpus. For each occurrence, the score is
maximum when the words xi and xj are the only
words in the phrase, i.e., we have unambiguous
nominal xjxi , in which case the score is 1. For
longer phrases, for non-adjacent words, and for
pairs anchored at words toward the left of the
compound, the score decreases proportionately.

(2) For each set Xj={xi+xj | for i>j} of candidate
pairs rank alternative pairs by their scores.

(3) Disambiguate by selecting the top choice from
each set such that its score is above an empiri-
cally established global threshold, it is
significantly higher than the second best choice
from the set, and it is not significantly lower than
the scores of pairs selected from other sets Xi .

The effectiveness of this algorithm can be meas-
ured in terms of recall (the proportion of all valid
head+modifier pairs extracted from ambiguous nomi-
nals), and precision (the proportion of valid pairs among
those extracted). The evaluation was done on a small
sample of randomly selected phrases, and the algorithm
performance was compared to manually selected correct
pairs. The following numbers were recorded: recall 66%
to 71%; precision 88% to 91%, depending on the size of
the training sample. In terms of the total number of pairs
extracted unambiguously from the parsed text (i.e., those
obtained by the procedure described in the previous sec-
tion), the disambiguation step recovers an additional 10%
to 15% of pairs, all of which were previously thrown out
as unrecoverable. A sample set of ambiguous phrases
and extracted head+modifier pairs is shown in Table 1.
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Ambiguous nominal Extracted pairs
�������������������������������������������������������

oil import fee oil import

import fee
�������������������������������������������������������

croatian wartime cabinet croatian cabinet

wartime cabinet
�������������������������������������������������������

national enviromental watchdog group national group

enviromental group

watchdog group
�������������������������������������������������������

current export subsidy program current program

export subsidy

subsidy program
�������������������������������������������������������

gas operating and maintaining expenses **gas operating

operating expenses

maintaining expenses
���������������������������������������������������������
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Table 1. Ambiguous nominals and extracted pairs.

EXTRACTING PROPER NAMES

Proper names, of people, places, events, organiza-
tions, etc., are often critical in deciding relevance of a
document. Since names are traditionally capitalized in
English text, spotting them is relatively easy, most of the
time. Many names are composed of more than a single
word, in which case all words that make up the name are
capitalized, except for prepositions and such, e.g., The
United States of America. It is important that all names
recognized in text, including those made up of multiple
words, e.g., South Africa or Social Security, are
represented as tokens, and not broken into single words,
e.g., South and Africa, which may turn out to be different
names altogether by themselves. On the other hand, we
need to make sure that variants of the same name are
indeed recognized as such, e.g., U.S. President Bill Clin-
ton and President Clinton, with a degree of confidence.
One simple method, which we use in our system, is to
represent a compound name dually, as a compound token
and as a set of single-word terms. This way, if a
corresponding full name variant cannot be found in a
document, its component words matches can still add to
the document score. A more accurate, but arguably more
expensive method would be to use a substring com-
parison procedure to recognize variants before matching.

In our system names are identified by the parser,
and then represented as strings, e.g., south+africa. The
name recognition procedure is extremely simple, in fact
little more than the scanning of successive words labeled
as proper names by the tagger (np and nps tags). Single-

word names are processed just like ordinary words,
except for the stemming which is not applied to them.
We also made no effort to assign names to categories,
e.g., people, companies, places, etc., a classification
which is useful for certain types of queries (e.g., To be
relevant a document must identify a specific generic drug
company). A more advanced recognizer is planned for
TREC-4 evaluation. In the TREC-3 database, compound
names make up about 8% of all terms generated. A
small sample of compound names extracted is listed
below:

right+wing+christian+fundamentalism

u.s+constitution

gun+control+legislation

national+railroad+transportation+corporation

superfund+hazardous+waste+cleanup+programme

u.s+government

united+states

exxon+valdez

dow_corning+corporation

chairman+julius+d+winer

new+york

wall+street+journal

mcdonnell+douglas+corp+brad+beaver

soviet+georgia

rebel+leader+savimbi

plo+leader+arafat

suzuki+samurai+soft_top+4wd

honda+civic

richard+j+rosebery

mr+rosebery

international+business+machine+corp

cytomegalovirus+retinitis

ids+financial+service+analyst+g+michael+kennedy

senate+judiciary+committee

first+fidelity+bank+n.a+south+jersey

eastern+u.s

federal+national+mortgage+association

canadian+airline+international

TERM CORRELATIONS FROM TEXT

Head-modifier pairs form compound terms used in
database indexing. They also serve as occurrence con-
texts for smaller terms, including single-word terms. If
two terms tend to be modified with a number of common
modifiers and otherwise appear in few distinct contexts,
we assign them a similarity coefficient, a real number
between 0 and 1. The similarity is determined by com-
paring distribution characteristics for both terms within
the corpus: how much information content do they carry,
do their information contribution over contexts vary
greatly, are the common contexts in which these terms
occur specific enough? In general we will credit high-
content terms appearing in identical contexts, especially
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if these contexts are not too commonplace.2

To cluster terms into similarity classes, we used a
(revised) variant of weighted Jaccard’s measure
described in (Grefenstette, 1992):

SIM (x 1,x 2) =

att
ΣMAX (W ([x,att ]),W ([y,att ])
att
ΣMIN (W ([x,att ]),W ([y,att ])
��������������������������

with

W ([x,y ]) = GEW (x)*log (fx,y)

GEW (x) = 1 +
y
Σ

�
�
�
�
� log (N)

ny

fx,y���� * log
�
�
� ny

fx,y����
�
�
	���������������

�
�
�
�
	

In the above, fx,y stands for absolute frequency of pair
[x,y ], ny is the frequency of term y, and N is the number
of single-word terms. Sample clusters obtained from
approx. 250 MByte (42 million words) subset of WSJ
(years 1990-1992) are given in Table 2.

In order to generate better similarities, we require
that words x 1 and x 2 appear in at least M distinct com-
mon contexts, where a common context is a couple of
pairs [x 1,y] and [x 2,y], or [y,x 1] and [y,x 2] such that they
each occurred at least three times. Thus, banana and Bal-
tic will not be considered for similarity relation on the
basis of their occurrences in the common context of
republic, no matter how frequent, unless there is another
such common context comparably frequent (there wasn’t
any in TREC’s WSJ database). For smaller or narrow
domain databases M=2 is usually sufficient. For large
databases covering a rather diverse subject matter, like
WSJ, we used M≥5.3 This, however, turned out not to be
sufficient. We would still generate fairly strong similarity
links between terms such as aerospace and pharmaceuti-
cal where 6 and more common contexts were found. In
the example at hand the following common contexts
were located, all occurring at the head (left) position of a
pair (at right are their global entropy weights (GEW) and
frequencies with aerospace and pharmaceutical, respec-
tively):4
������������������������������������

2 It would not be appropriate to predict similarity between
language and logarithm on the basis of their co-occurrence with natur-
al.

3 For example banana and Dominican were found to have two
common contexts: republic and plant, although this second occurred in
apparently different senses in Dominican plant and banana plant.

4 Other common contexts, such as company or market, have al-
ready been rejected because they were paired with too many different
words (a high dispersion ratio).

������������������������������������������������������

CONTEXT GEW freq/aerospace freq/pharmaceutical

firm 0.58 9 22

industry 0.51 84 56

sector 0.61 5 9

concern 0.50 130 115

analyst 0.62 23 8

division 0.53 36 28

giant 0.62 15 12
�������������������������������������������������������
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Note that while some of these weights are quite low (less
than 0.6 — GEW takes values between 0 and 1), thus
indicating a low importance context, the frequencies with
which these contexts occurred with both terms were high
and balanced on both sides (e.g., concern), thus adding to
the strength of association. We are now considering addi-
tional thresholds to bar low importance contexts from
being used in similarity calculation.

It may be worth pointing out that the similarities
are calculated using term co-occurrences in syntactic
rather than in document-size contexts, the latter being the
usual practice in non-linguistic clustering (e.g., Sparck
Jones and Barber, 1971; Crouch, 1988; Lewis and Croft,
1990). Although the two methods of term clustering may
be considered mutually complementary in certain situa-
tions, we believe that more and stronger associations can
be obtained through syntactic-context clustering, given
sufficient amount of data and a reasonably accurate syn-
tactic parser.5

QUERY EXPANSION

Similarity relations are used to expand user queries
with new terms, in an attempt to make the final search
query more comprehensive (adding synonyms) and/or
more pointed (adding specializations).6 It follows that not
all similarity relations will be equally useful in query
expansion, for instance, complementary and antonymous
relations like the one between Australian and Canadian,
accept and reject, or even generalizations like from
aerospace to industry may actually harm system’s per-
formance, since we may end up retrieving many
������������������������������������

5 Non-syntactic contexts cross sentence boundaries with no fuss,
which is helpful with short, succinct documents (such as CACM
abstracts), but less so with longer texts; see also (Grishman et al., 1986).

6 Query expansion (in the sense considered here, though not quite
in the same way) has been used in information retrieval research before
(e.g., Sparck Jones and Tait, 1984; Harman, 1988), usually with mixed
results. An alternative is to use term clusters to create new terms, "meta-
terms", and use them to index the database instead (e.g., Crouch, 1988;
Lewis and Croft, 1990). We found that the query expansion approach
gives the system more flexibility, for instance, by making room for
hypertext-style topic exploration via user feedback.
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irrelevant documents. On the other hand, database search
is likely to miss relevant documents if we overlook the
fact that vice director can also be deputy director, or that
takeover can also be merge, buy-out, or acquisition. We
noted that an average set of similarities generated from a
text corpus contains about as many "good" relations
(synonymy, specialization) as "bad" relations (antonymy,
complementation, generalization), as seen from the query
expansion viewpoint. Therefore any attempt to separate
these two classes and to increase the proportion of
"good" relations should result in improved retrieval. This
has indeed been confirmed in our experiments where a
relatively crude filter has visibly increased retrieval pre-
cision.

In order to create an appropriate filter, we devised
a global term specificity measure (GTS) which is calcu-
lated for each term across all contexts in which it occurs.
The general philosophy here is that a more specific
word/phrase would have a more limited use, i.e., a more
specific term would appear in fewer distinct contexts. In
this respect, GTS is similar to the standard inverted docu-
ment frequency (idf) measure except that term frequency
is measured over syntactic units rather than document
size units.7 Terms with higher GTS values are generally
considered more specific, but the specificity comparison
is only meaningful for terms which are already known to
be similar. The new function is calculated according to
the following formula:

GTS (w) =

�
�


�
�ICL(w)

ICR(w)

ICL(w) * ICR(w)

otherwise

if only ICR(w) exists

if both exist

where (with nw, dw > 0):

ICL(w) = IC ([w,_ ]) =
dw(nw+dw−1)

nw������������

ICR(w) = IC ([_,w ]) =
dw(nw+dw−1)

nw������������

For any two terms w 1 and w 2, and a constant δ > 1, if
GTS (w 2) ≥ δ * GTS (w 1) then w 2 is considered more
specific than w 1. In addition, if SIMnorm(w 1,w 2) = σ > θ,
where θ is an empirically established threshold, then w 2
can be added to the query containing term w 1 with
weight σ.8 For example, the following were obtained
from the WSJ training database:

GTS (takeover) = 0.00145576
������������������������������������

7 We believe that measuring term specificity over document-size
contexts (e.g., Sparck Jones, 1972) may not be appropriate in this case.
In particular, syntax-based contexts allow for processing texts without
any internal document structure.

8 For TREC-2 we used σ = 0.2; δ varied between 10 and 100.

GTS (merge) = 0.00094518
GTS (buy −out) = 0.00272580
GTS (acquire) = 0.00057906

with

SIM (takeover,merge) = 0.190444
SIM (takeover,buy −out) = 0.157410
SIM (takeover,acquire) = 0.139497
SIM (merge,buy −out) = 0.133800
SIM (merge,acquire) = 0.263772
SIM (buy −out,acquire) = 0.109106

Therefore both takeover and buy-out can be used to spe-
cialize merge or acquire. With this filter, the relation-
ships between takeover and buy-out and between merge
and acquire are either both discarded or accepted as
synonymous. At this time we are unable to tell
synonymous or near synonymous relationships from
those which are primarily complementary, e.g., man and
woman.

Query expansion is an important part of our system, but
it wasn’t used in TREC-3, mostly because we were in
process of redesigning it. Following TREC-2 we found
various problems with both the term clustering procedure
as well as with the way the cluster were used to add new
terms to queries. Details of these finding are discussed in
TREC-2 final report.

CREATING AN INDEX

The limited amount of resources that we had avail-
able for indexing forced us to devise a method that splits
the collection randomly and produces several sub-
indexes. This method would allow us now to index even
larger collections in reasonable times. The preliminary
tests that we carried out in order to compare the perfor-
mance of systems where the collection is split into N
sub-indexes, for different values of N, suggest that a col-
lection can be split into at least 7 sub-indexes without
seeing any degradation in the performance. Given the
results that we obtained from such tests as well as the
fact that the tests were carried out using relatively small
collections (about 150 Megabytes) we intend to perform
more extensive testing as soon as possible.

One of the problems we had to face for TREC-1
and TREC-2 was that we did not have enough real
memory to index the complete collection (category A) in
a reasonable time . Even indexing only the collection for
category B (550 megabytes for the ad-hoc experiments)
used to take 2 weeks, or about 330 hours. This was more
slow than the times that could be obtained by other ver-
sions of the PRISE system that were already available by
that time. We used a slower version because we did not
have then enough main memory to use the faster one.
The faster version grows the word frequency tree in main
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������������������������������������������

word cluster
������������������������������������������

takeover merge, buy-out, acquire, bid
������������������������������������������

benefit compensate, aid, expense
������������������������������������������

capital cash, fund, money
������������������������������������������

staff personnel, employee, force
������������������������������������������

attract lure, draw, woo
������������������������������������������

sensitive crucial, difficult, critical
������������������������������������������

speculate rumor, uncertainty, tension
������������������������������������������

president director, executive, chairman
������������������������������������������

vice deputy
������������������������������������������

outlook forecast, prospect, trend
������������������������������������������

law rule, policy, legislate, bill
������������������������������������������

earnings profit, revenue, income
������������������������������������������

portfolio asset, invest, loan
������������������������������������������

inflate growth, demand, earnings
������������������������������������������

industry business, company, market
������������������������������������������

growth increase, rise, gain
������������������������������������������

firm bank, concern, group, unit
������������������������������������������

environ climate, condition, situation
������������������������������������������

debt loan, secure, bond
������������������������������������������

lawyer attorney
������������������������������������������

counsel attorney, administrator, secretary
������������������������������������������

compute machine, software, equipment
������������������������������������������

competitor rival, competition, buyer
������������������������������������������

alliance partnership, venture, consortium
������������������������������������������

big large, major, huge, significant
������������������������������������������

fight battle, attack, war, challenge
������������������������������������������

base facile, source, reserve, support
������������������������������������������

shareholder creditor, customer, client

investor, stockholder
�������������������������������������������
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Table 2. Selected clusters obtained from syntactic contexts, derived

from approx. 40 million words of WSJ text, with weighted Tanimoto

formula.

memory, and it is the physical memory that matters here,
not the virtual memory, since a tree larger than the size
of the real memory causes so many page faults that per-
formance becomes unacceptably slow.

The version of the PRISE system that we used for
TREC-3 is much faster than previous versions. Accord-
ing to the on-line documentation provided by NIST the
old system would take about 67 hours to index 276
Megabytes of WSJ material while the new system takes
less than 2 hours to index the same material. Still, we
did not have enough main memory to use the new system
to index the complete collection. Our solution to this
problem was to split the collection into N sets of almost
equal number of documents and create a separate sub-
index for each set. In order to keep the N sub-indexes
balanced with respect to each other (so that the term idfs
are comparable across sub-indexes, for example) we split
the collection randomly into N sets. This is done by
assigning each document to one of the N sets selected at
random. Our goal was to build N sets that would be as
homogeneous as possible. At retrieval time the same
query is submitted to each one of the sub-indexes and a
separate list of ranked documents is obtained for each
index. Since we expect idfs to be comparable across
sub-indexes, it makes sense to compare the scores of
documents belonging to different sub-indexes. The
result of the query is then the set of documents with the
highest scores chosen from the union of all lists of
ranked documents.

In order to evaluate this technique we ran a series
of experiments involving about 50000 records. We split
that collection into N sets for several values of N (from 1
to 7) and made some measurements of parameters that
we expected to be indicators of the degree of homo-
geneity (e.g., standard deviation of the total number of
terms per index, standard deviation of the maximum idf,
standard deviation of the number of unique terms, and
others). As expected, these indicators showed a decreas-
ing level of homogeneity as N grows larger. This infor-
mation is summarized in Table 3.

For each value of N, we evaluated the performance
of the system using a series of queries for which NIST
had provided relevance judgments. For the weighting
scheme we were using, and the small collection used for
these preliminary experiments, we observed that the per-
formance actually peaks at N = 4 (the average precision
when N was 4 was about 7% better than when N was 1).
We thought that these results were promising enough to
justify the use of the technique described in order to
index the complete collection but we intend to perform a
much more careful and complete series of experiments as
soon as the time and the resources are available. Table 4
summarizes the system’s performance at various levels
of index split with a subset of AP subcollection.
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No. of Max-Mem Max-idf Uniq.terms Uniq.terms

indexes MB %std Mean %std
������������������������������������������������������

1 81.9 0.000 921253 0.000

2 61.2 0.424 600869 1.006

3 54.7 0.902 438992 11.678

4 48.2 0.555 373249 3.095

5 46.0 0.986 314986 6.356

6 44.1 1.080 279261 7.318

7 46.8 2.432 247606 16.475
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Table 3. Statistics of index splitting performed on a subset of

Tipster AP88 subcollection consisting of 48,770 records (about 230

MBytes).

����������������������������������������

No. of Avg Prec R-Prec Recall

indexes %change %change %change
����������������������������������������

1 0.00 0.00 0.00

2 +4.04 +1.85 +1.11

3 +4.63 +0.72 +0.81

4 +7.04 +4.53 +2.59

5 +1.68 +4.08 +3.92

6 +5.68 +2.75 +4.29

7 +4.18 +4.45 +4.36
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Table 4. Performance statistics for split index performed on a subset of

Tipster AP88 subcollection consisting of 48,770 records (about 230

MBytes).

For TREC-3 we used 4 sub-indexes for the ad-hoc
experiments (2200 Megabytes) and 2 for the routing part
(1100 Megabytes). We chose these numbers because, in
each case, it was the smallest number of sub-indexes that
we could handle given our resources. A nice side-effect
of this technique is that each index can be created in
parallel on a different machine, making the total time
required even shorter. The parameters of the 4-way split
used in indexing the TREC-3 ad-hoc database are listed
in Table 5.

TERM WEIGHTING ISSUES

Finding a proper term weighting scheme is critical
in term-based retrieval since the rank of a document is
determined by the weights of the terms it shares with the
query. One popular term weighting scheme, known as
tf.idf, weights terms proportionately to their inverted
document frequency scores and to their in-document

�������������������������������������������������������

Index Postings Dict. Max-idf Records Uniq.terms

No. MB MB
�������������������������������������������������������

1 128.82 72.91 18.509 186557 2928737

2 129.34 72.26 18.492 184460 2909249

3 128.99 72.82 18.499 185297 2931791

4 128.27 71.26 18.498 185114 2874007
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Table 5. Statistics of the 4-way split index created for ad-hoc

database from Tipster Disks 1 and 2 (about 2 GBytes).

frequencies (tf). The in-document frequency factor is
usually normalized by the document length, that is, it is
more significant for a term to occur 5 times in a short
20-word document, than to occur 10 times in a 1000-
word article.9

In our official TREC runs we used the normalized
tf.idf weights for all terms alike: single ‘ordinary-word’
terms, proper names, as well as phrasal terms consisting
of 2 or more words. Whenever phrases were included in
the term set of a document, the length of this document
was increased accordingly. This had the effect of
decreasing tf factors for ‘regular’ single word terms.

A standard tf.idf weighting scheme (and we
suspect any other uniform scheme based on frequencies)
is inappropriate for mixed term sets (ordinary concepts,
proper names, phrases) because:

(1) It favors terms that occur fairly frequently in a
document, which supports only general-type
queries (e.g., "all you know about ‘star wars’").
Such queries are not typical in TREC.

(2) It attaches low weights to infrequent, highly
specific terms, such as names and phrases, whose
only occurrences in a document often decide of
relevance. Note that such terms cannot be reli-
ably distinguished using their distribution in the
database as the sole factor, and therefore syntac-
tic and lexical information is required.

(3) It does not address the problem of inter-term
dependencies arising when phrasal terms and
their component single-word terms are all
included in a document representation, i.e.,
launch+satellite and satellite are not indepen-
dent, and it is unclear whether they should be
counted as two terms.

������������������������������������
9 This is not always true, for example when all occurrences of a

term are concentrated in a single section or a paragraph rather than
spread around the article. See the following section for more discussion.
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In our post-TREC-2 experiments we considered
(1) and (2) only. We changed the weighting scheme so
that the phrases (but not the names which we did not dis-
tinguish in TREC-2) were more heavily weighted by
their idf scores while the in-document frequency scores
were replaced by logarithms multiplied by sufficiently
large constants. In addition, the top N highest-idf match-
ing terms (simple or compound) were counted more
toward the document score than the remaining terms.
This ‘hot-spot’ retrieval option is discussed in the next
section.

Schematically, these new weights for phrasal and
highly specific terms are obtained using the following
formula, while weights for most of the single-word terms
remain unchanged:

weight (Ti)=(C 1*log (tf )+C 2*α(N,i))*idf

In the above, α(N,i) is 1 for i <N and is 0 otherwise. The
selection of a weighting formula was partly constrained
by the fact that document-length-normalized tf weights
were precomputed at the indexing stage and could not be
altered without re-indexing of the entire database. The
intuitive interpretation of the α(N,i) factor is given in the
following section.

The table below illustrates the problem of weight-
ing phrasal terms using topic 101 and a relevant docu-
ment (WSJ870226-0091).

Topic 101 matches WSJ870226-0091

duplicate terms not shown

TERM TF.IDF NEW WEIGHT

sdi 1750 1750

eris 3175 3175

star 1072 1072

wars 1670 1670

laser 1456 1456

weapon 1639 1639

missile 872 872

space+base 2641 2105

interceptor 2075 2075

exoatmospheric 1879 3480

system+defense 2846 2219

reentry+vehicle 1879 3480

initiative+defense 1646 2032

system+interceptor 2526 3118����������������������������������������
DOC RANK 30 10

Changing the weighting scheme for compound terms,
along with other minor improvements (such as expanding
the stopword list for topics, or correcting a few parsing
bugs) has lead to the overall increase of precision of
nearly 20% over our official TREC-2 ad-hoc results. This
weighting scheme was again used in TREC-3 runs.

‘HOT SPOT’ RETRIEVAL

Another difficulty with frequency-based term
weighting arises when a long document needs to be
retrieved on the basis of a few short relevant passages. If
the bulk of the document is not directly relevant to the
query, then there is a strong possibility that the document
will score low in the final ranking, despite some strongly
relevant material in it. This problem can be dealt with by
subdividing long documents at paragraph breaks, or into
approximately equal length fragments and indexing the
database with respect to these (e.g., Kwok 1993). While
such approaches are effective, they also tend to be costly
because of increased index size and more complicated
access methods.

Efficiency considerations has led us to investigate
an alternative approach to the hot spot retrieval which
would not require re-indexing of the existing database or
any changes in document access. In our approach, the
maximum number of terms on which a query is permitted
to match a document is limited to N highest weight
terms, where N can be the same for all queries of may
vary from one query to another. Note that this is not the
same as simply taking the N top terms from each query.
Rather, for each document for which there are M match-
ing terms with the query, only min(M,N) of them,
namely those which have highest weights, will be con-
sidered when computing the document score. Moreover,
only the global importance weights for terms are con-
sidered (such as idf), while local in-document frequency
(eg., tf) is suppressed by either taking a log or replacing
it with a constant. The effect of this ‘hot spot’ retrieval is
shown below in the ranking of relevant documents within
the top 1000 retrieved documents for topic 65:

Log(tf).idf retrieval���������������������������������
DOCUMENT ID RANK SCORE

WSJ870304-0091 4 12228

WSJ891017-0156 7 9771

WSJ920226-0034 14 8921

WSJ870429-0078 26 7570

WSJ870205-0078 33 6972

WSJ880712-0033 34 6834

WSJ920116-0002 37 6580

WSJ910328-0013 74 4872

WSJ910830-0140 80 4701

WSJ890804-0138 102 4134

WSJ911212-0022 104 4065

WSJ870825-0026 113 3922

WSJ880712-0023 135 3654

WSJ871202-0145 153 3519
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Hot-spot idf-dominated with N=20���������������������������������
DOCUMENT ID RANK SCORE

WSJ920226-0034 1 11955

WSJ870304-0091 3 11565

WSJ870429-0078 5 9997

WSJ920116-0002 7 9997

WSJ910830-0140 11 8792

WSJ870205-0078 20 8402

WSJ910328-0013 29 8402

WSJ880712-0033 71 6834

WSJ880712-0023 72 6834

WSJ891017-0156 87 6834

WSJ890804-0138 92 6834

WSJ911212-0022 111 6834

WSJ871202-0145 124 6834

The final ranking is obtained by merging the two
rankings by score. While some of the recall may be
sacrificed (‘hot spot’ retrieval has, understandably, lower
recall than full query retrieval, and this becomes the
lower bound on recall for the combined ranking) the
combined ranking precision has been consistently better
than in either of the original rankings: an average
improvement is 10-12% above the tf.idf run precision
(which is often stronger of the two). The ‘hot spot’
weighting is represented with the α factor in the term
weighting formula given in the previous section.

SUMMARY OF RESULTS

We have processed the total of 3334 MBytes of
text during TREC-3. The first 2162 MBytes were data
from the Tipster/TREC disks 1 and 2 of which 550
Mbytes (Wall Street Journal subcollection) were previ-
ously processed for TREC-2; however, even this portion
had to be partially reprocessed. The entire process (tag-
ging, parsing, phrase and name extraction) took about 45
minutes per Megabyte, or just over 2 months on a Sun’s
SparcStations 10 (at times using an additional Sparc-2).
Building a 4-way split index took about 0.6 minutes per
Megabyte, or about 21 hours on the Sparc10. The final
index size, including postings files and term dictionaries
was 804 MBytes, and included approximately 2.9 million
unique terms in each sub-index (that’s single-word terms,
syntactic word pairs and compound names) or nearly 16
(unique) terms per document.

The remaining 1172 MBytes were documents from
the Tipster/TREC disk 3 of which about 300 Mbytes of
San Jose Mercury articles were previously processed for
TREC-2. This portion of the corpus was used to create
the routing database. Natural language processing of this
part required about 4 weeks on SparcStation 10, and
about 10 hours of indexing time. The final size of the
index was 428 MBytes, split into 2 sub-indexes of about

214 MBytes each. Each sub-index contained about 3.2
million unique terms, or more than 19 unique terms per
record.

Note that in both cases the index size was at 37%
of the initial size of the corpus. Given that the natural
language processing has added an average 30% to the
size of the input (i.e., for each Megabyte of text we
obtained about 1.3 Megabytes of terms), the indexer
compression ratio was actually 29%.10

Two types of retrieval have been done: (1) new
topics 151-200 were run in the ad-hoc mode against the
Disk-1&2 database, and (2) topics 101-150, previously
used in TREC-2, were run in the routing mode against
the Disk-3 database. In each category 2 official runs were
performed, all fully automatic, with different set up of
system’s parameters. These runs were labeled nyuir1 and
nyuir2. The second run in the routing category includes
an experimental use an automatic feedback program
which uses the known relevance judgements for topics
101-150 with respect TREC-2 database, to automatically
expand the search queries. Summary statistics for these
runs are shown in Tables 6 and 7. We note that there is a
significant (20%) improvement in precision, as well as a
visible increase in recall over the base statistical run
when phrasal terms are used. The increase is smaller for
routing runs because the routing queries already con-
tained manually prepared concepts fields (<con>). We
also note the robust improvement of routing results when
massive query expansion is performed based on the
known relevance judgements for these queries with
respect to the training database.

An example ad-hoc topic is shown below:

<top>

<num> Number: 189

<title> Topic: Real Motives for Murder

<desc> Description:

Document must identify a murderer’s motive for killing a

person or persons in a true case.

<narr> Narrative:

Most relevant would be a description of an intentional

murder with a statement of the murderer’s motive. An

unintentional murder, such as in a charge of second-degree

homicide, would be relevant if a motive is stated for an

action which clearly led to the victim’s death.

</top>

������������������������������������
10 This may be somewhat misleading, since many of the com-

pound terms added by NLP were singletons which take little index
space. The unprocessed text compression ratio may in fact be closer to
37%.
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The reader familiar with previous TREC evaluations may
notice that this query lacks the manually derived <con>
field which listed important concepts relevant to the
topic, some of which had not even occurred in the actual
query. Performance comparison in database search per-
formed during TREC-2 showed that search queries built
from the concepts fields outperformed the queries based
on narrative sections of the topics by as much as 25% to
30% in precision and up to 10% in recall. Nonetheless, it
was felt that the results obtained with the use of the
<con> field in the queries did not reflect accurately the
capabilities of automatic IR systems in dealing with
unprocessed input, therefore the field was dropped in
TREC-3.

The table below shows the search query obtained
from Topic 189 above with respect to one of the 4 sub-
indexes making up the ad-hoc database. Note that the
terms extracted from <desc> field are weighted doubly.

Query 189

term = motive+murder idf = 18.509256 weight = 2

term = motive+murder idf = 18.509256 weight = 1

term = murder+intentional idf = 18.509256 weight = 1

term = state+motive idf = 17.509256 weight = 1

term = death+victim idf = 15.509257 weight = 1

term = motive+real idf = 15.509257 weight = 1

term = motive+real idf = 15.509257 weight = 1

term = charge+homicide idf = 14.339332 weight = 1

term = unintentional idf = 12.727898 weight = 1

term = kill+person idf = 12.033524 weight = 2

term = kill+person idf = 12.033524 weight = 1

term = second+degree idf = 11.299804 weight = 1

term = homicide idf = 10.531977 weight = 1

term = intentional idf = 9.724622 weight = 1

term = motive idf = 8.484118 weight = 1

term = motive idf = 8.484118 weight = 1

term = motive idf = 8.484118 weight = 1

term = murder idf = 7.294331 weight = 2

term = murder idf = 7.294331 weight = 1

term = murder idf = 7.294331 weight = 1

term = murder idf = 7.294331 weight = 1

term = victim idf = 6.775394 weight = 1

term = true idf = 6.400079 weight = 1

term = degree idf = 5.974225 weight = 1

term = death idf = 5.846589 weight = 1

Note that many ‘function’ words have been removed
from the query, e.g., must, identify, as well as other
‘common words’ such as document and relevant (this is
in addition to our regular list of ‘stopwords’). Some still
remain, however, e.g., true and degree, because these
could not be uniformly considered as ‘common’ across
all queries.

����������������������������������������
����������������������������������������

Run base nyuir1 nyuir2

Name ad-hoc ad-hoc ad-hoc
����������������������������������������

Queries ��
�
�
�
�
�

50 ��
�
�
�
�
�

50 ��
�
�
�
�
�

50��������������������������������������������������������������������������������

Tot number of docs over all queries
����������������������������������������

Ret 50000 50000 50000

Rel 9805 9805 9805

RelRet 5398 5978 5978

%chg �
�
�
�
�
�
�

+11.0 �
�
�
�
�
�
�

+11.0��������������������������������������������������������������������������������

Recall
����������������������������������������

0.00 0.6710 0.7653 0.7639

0.10 0.4444 0.5420 0.5429

0.20 0.3784 0.4465 0.4523

0.30 0.3298 0.3763 0.3814

0.40 0.2821 0.3271 0.3281

0.50 0.2274 0.2608 0.2613

0.60 0.1684 0.2031 0.2033

0.70 0.1112 0.1522 0.1519

0.80 0.0699 0.0990 0.0989

0.90 0.0147 0.0339 0.0332

1.00 �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0.0000 ��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0.0029 ��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0.0029��������������������������������������������������������������������������������

Average precision over all rel docs
����������������������������������������

Avg 0.2271 0.2722 0.2735

%chg ��
�
�

��
�
�

+20.0 ��
�
�

+20.0��������������������������������������������������������������������������������

Precision at
����������������������������������������

5 docs 0.5160 0.5960 0.5880

10 docs 0.4680 0.5480 0.5580

15 docs 0.4427 0.5280 0.5253

20 docs 0.4280 0.5060 0.5070

30 docs 0.4113 0.4793 0.4827

100 docs 0.3138 0.3650 0.3644

200 docs 0.2489 0.2902 0.2907

500 docs 0.1623 0.1832 0.1832

1000 docs ��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0.1080 ��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0.1196 ��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0.1196
����������������������������������������

R-Precision (after RelRet)
����������������������������������������

Exact 0.2807 0.3232 0.3231

%chg +15.0 +15.0
������������������������������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
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Table 6. Automatic ad-hoc run statistics for queries 151-200 against

Tipster Disks-1&2 database: (1) base - statistical terms only; (2) nyuir1

- using syntactic phrases, names, and the new weighting scheme; (3)

nyuir2 - same as 2 but different parameters on the weighting scheme.
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��������������������������������������������������
��������������������������������������������������

Run base nyuir1 nyuir2 nyuir2a

Name routing routing routing routing
��������������������������������������������������

Queries ��
�
�
�
�
�

50 ��
�
�
�
�
�

50 ��
�
�
�
�
�

50 ��
�
�
�
�
�

50����������������������������������������������������������������������������������������������������

Tot number of docs over all queries
��������������������������������������������������

Ret 50000 50000 50000 5000

Rel 9353 9353 9353 9353

RelRet 6011 6350 7203 7345

%chg �
�
�
�
�
�
�

+5.6 �
�
�
�
�
�
�

+19.8 �
�
�
�
�
�
�

+21.2����������������������������������������������������������������������������������������������������

Recall (interp) Precision Averages
��������������������������������������������������

0.00 0.7551 0.7401 0.7711 0.7881

0.10 0.4871 0.5003 0.5957 0.6243

0.20 0.4059 0.4255 0.4857 0.5117

0.30 0.3482 0.3719 0.4337 0.4492

0.40 0.2952 0.3330 0.3758 0.4005

0.50 0.2557 0.2723 0.3321 0.3531

0.60 0.2116 0.2327 0.2762 0.2922

0.70 0.1582 0.1765 0.2213 0.2411

0.80 0.0953 0.1094 0.1480 0.1541

0.90 0.0651 0.0691 0.0816 0.0918

1.00 �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0.0048 ��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0.0077 ��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0.0069 ��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0.0117����������������������������������������������������������������������������������������������������

Average precision over all rel docs
��������������������������������������������������

Avg 0.2578 0.2743 0.3244 0.3422

%chg ��
�
�

��
�
�

+6.4 ��
�
�

+25.8 ��
�
�

+32.7����������������������������������������������������������������������������������������������������

Precision at
��������������������������������������������������

5 docs 0.5080 0.5280 0.6000 0.6080

10 docs 0.4520 0.4800 0.5560 0.5760

15 docs 0.4533 0.4600 0.5333 0.5560

20 docs 0.4410 0.4390 0.5200 0.5370

30 docs 0.4273 0.4273 0.4940 0.5133

100 docs 0.3418 0.3584 0.4098 0.4270

200 docs 0.2838 0.3063 0.3380 0.3484

500 docs 0.1874 0.2008 0.2260 0.2310

1000 docs ��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0.1202 ��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0.1270 ��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0.1441 ��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0.1469
��������������������������������������������������

R-Precision (after Rel)
��������������������������������������������������

Exact 0.3062 0.3135 0.3510 0.3635

%chg +2.4 +14.6 +18.7
����������������������������������������������������
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Table 7. Automatic routing run statistics for queries 101-150 against

Tipster Disk-3 database: (1) base - statistical terms only; (2) nyuir1 -

using syntactic phrases, names, and the new weighting scheme; (3)

nyuir2 - same as 2 with the automatic relevance feedback, but some

queries not fully expanded due to an error; (4) nyuir2a - nyuir2 rerun

after TREC-3 with full feedback.

CONCLUSIONS

We presented in some detail our natural language
information retrieval system consisting of an advanced
NLP module and a ‘pure’ statistical core engine. While
many problems remain to be resolved, including the
question of adequacy of term-based representation of
document content, we attempted to demonstrate that the
architecture described here is nonetheless viable. In par-
ticular, we demonstrated that natural language processing
can now be done on a fairly large scale and that its speed
and robustness has improved to the point where it can be
applied to real IR problems. We suggest, with some cau-
tion until more experiments are run, that natural language
processing can be very effective in creating appropriate
search queries out of user’s initial specifications which
can be frequently imprecise or vague.

At the same time it is important to keep in mind
that the NLP techniques that meet our performance
requirements (or at least are believed to be approaching
these requirements) are still fairly unsophisticated in
their ability to handle natural language text. In particular,
advanced processing involving conceptual structuring,
logical forms, etc., is still beyond reach, computationally.
It may be assumed that these advanced techniques will
prove even more effective, since they address the prob-
lem of representation-level limits; however the experi-
mental evidence is sparse and necessarily limited to
rather small scale tests.
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